If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2/3=48
We move all terms to the left:
3y^2/3-(48)=0
We multiply all the terms by the denominator
3y^2-48*3=0
We add all the numbers together, and all the variables
3y^2-144=0
a = 3; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·3·(-144)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*3}=\frac{0-24\sqrt{3}}{6} =-\frac{24\sqrt{3}}{6} =-4\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*3}=\frac{0+24\sqrt{3}}{6} =\frac{24\sqrt{3}}{6} =4\sqrt{3} $